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The chemistry jungle.

Chemistry is not a discipline today; it is a jungle....

When chemistry becomes a discipline, mathematical chemists
will design new materials, predict their properties, and tell en-
gineers how to make them—without entering the laboratory.
We’ve got a long way to go on that one.

— Robert Heinlein
from “Where To?”, Galaxy magazine, Feb. 1952
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Computation is rapidly transforming chemistry into a “discipline.”

Louie, Chan, DAR Jornada, Li, and Qiu. Nature Mater. 20, 728 (2021).

Nature Materials, June 2021

Quantum chemistry plays a central

role throughout computational

chemistry.
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Outline

1 Overview of Standard Quantum Chemistry Models
The molecular Schrödinger equation
Born-Oppenheimer approximation
Wave function methods
Density functional theory
Basis sets
Predictions versus reality

2 Selected Applications (biased by my own research)
Theory aiding experiment: NMR crystallography
Theory leading experiment: Photomechanical engines
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The molecular Schrödinger equation is really complicated.

The molecular Ĥ always contains:

Kinetic energy for each nucleus

Kinetic energy for each electron

Attraction of each electron to each nucleus

Repulsion between each pair of electrons

Repulsion between each pair of nuclei
caffeine
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Such Hamiltonians are much too complicated to solve exactly. Need to approximate.
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The Born-Oppenheimer approximation

Key approximation: the Born-Oppenheimer approximation approximately separates the electronic and
nuclear variables.

Only approximate since electron-nuclear attraction terms couple electrons and nuclei, preventing
rigorous separation of variables.

Nuclei are much more massive than electrons: mnuc ≈ 1000me

Means electrons move much faster than nuclei, respond quickly to changes in nuclear positions.

Like flies (electrons) buzzing around a rhino (nuclei).
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The Born-Oppenheimer procedure

Original Hamiltonian: Ĥ = −
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Strategy for using the Born-Oppenheimer approximation

1 Choose nuclear positions (i.e. molecular geometry), fix nuclei.

⇒ nuclear kinetic energy terms→ 0 and
ZAZB

RAB
→ constant

2 Solve resulting “electronic” Schrödinger equation, find electronic wavefunction and energy.
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3 Repeat Step 2 at multiple molecular geometries to map out a “potential energy surface”

4 If desired, solve “nuclear Schrödinger equation” that depends on the potential energy surface.
e.g. Computing harmonic vibrational frequencies
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The potential energy surface maps out important species.

Potential Energy Surface (PES): The electronic energy as a function of nuclear positions.

Image credit: Wang, Lv, Gao, & Ma. Acc. Chem. Res. 55 2068 (2022).

Optimize molecular geometry to
stationary points on the PES.

Stable species ⇒ Minima

Reactants
Products
Reaction Intermediates
Conformers
Have zero imaginary vibrational
frequencies.

Transition states ⇒ 1st-order saddle
points

Have exactly 1 imaginary vibrational
frequency.
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The hierarchy of popular quantum chemistry methods

Always must seek to balance accuracy and computational efficiency.

All of these methods seek to solve the
electronic part of the Schrödinger equation.

Hartree-Fock (HF) is the simplest method, but
not very accurate.

CCSD(T) is the “gold standard” of quantum
chemistry. Practical upper limit of accuracy.

Computational cost grows steeply for better
methods.

e.g. CCSD(T): N7 scaling means doubling system

size increases cost 27 = 128 times!

DFT has HF-like cost, but significantly better
accuracy.
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Hartree-Fock (HF) theory is quantitative molecular orbital (MO) theory.

HF forms molecular orbitals by taking linear combinations of atomic orbitals.

Find the set of molecular orbitals (MOs) that minimizes the energy. (Variational principle)

Pair up electrons in the lowest-energy orbitals. (Pauli Exclusion, Aufbau principles)

MO Diagram for H2
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Form the σ bonding orbital by adding the 1s orbitals:
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Form the σ∗ anti-bonding orbital by subtracting the 1s orbitals:
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Sample Hartree-Fock calculation on Benzene

Look at only the π and π∗ orbitals here.

E
nergy (hartrees)

0

Benzene: HF/6-31G(d)
π  Molecular Orbitals

C6H6

Electrostatic Potential
Red = negative, blue = positive
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Hartree-Fock is a mean field theory.

Each electron feels only average “smear” of the other electrons.
HF lacks electron-electron correlations.

HF captures ∼99% of the total energy.
Gives decent molecular geometries.
But quantitatively poor reaction energies.

Unfortunately, the missing 1%, called the correlation energy, is important for predicting chemistry
accurately.

Ecorr = Eexact − EHF

Two potential strategies for improving upon Hartree-Fock theory

Both seek to capture that missing correlation energy.

1 Møller-Plesset perturbation theory

2 Configuration Interaction/Coupled Cluster theory
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Second-Order Møller-Plesset Perturbation Theory (MP2)

Perturbation theory approximates the solution to a hard problem as the solution to an easier
problem plus corrections.

Møller-Plesset Perturbation Theory uses perturbation theory to improve upon HF.

Hard problem: Exact solution to electronic Schrödinger Eq. Easier problem: HF.

Ĥexact = ĤHF + Ĥcorr Ψexact ≈ ΨHF + Ψ(1) + Ψ(2) + · · · Eexact ≈ EHF + E (2) + · · ·

MP2: First correction to the energy occurs at second-order (E (2)).

Captures 99.8–99.9% of the total energy.
Improves significantly upon HF for energies and geometries.
Can be a good alternative to DFT in some cases.
Has issues with dispersion interactions, though corrections exist. Phys. Chem. Chem. Phys. 24, 3695-3712 (2022).

MP3, MP4, etc: Higher-order corrections also can be computed, but coupled cluster methods
usually perform better for similar computational effort.
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Configuration Interaction

Configuration Interaction (CI): Optimize a wave function that is a linear combination of different
possible ways of arranging the electrons in the Hartree-Fock orbitals.

Example: He atom with 2 orbitals

|ΦCI 〉 = c1|1s ↑, 1s ↓〉+ c2|2s ↑, 1s ↓〉+ c3|1s ↑, 2s ↓〉+ c4|2s ↑, 2s ↓〉

Denote the configurations in terms of their “excitations” from the Hartree-Fock one.

Including all possible configurations (Full CI) leads to “exact” result—impractical!

Instead, truncate to e.g. only singly and doubly-excited configurations (CISD).
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Coupled Cluster Theory

Truncated CI models like CISD have systematic size-consistency errors.

Error grows with system size.

Stems from neglect of important higher-order excitations.

Coupled cluster (CC) theory is similar to CI, but cures this problem.

|ΨCC 〉 = eT̂ |ΦHF 〉 =

(
1 + T̂ +

1

2
T̂ 2 +

1

6
T̂ 3 · · ·

)
|ΦHF 〉

CCSD: Coupled cluster theory with singles and doubles—O(N6) cost.

CCSDT: Coupled cluster theory with singles, doubles, and triples—O(N8) cost. Too Expensive!

Compromise by estimating the triples contribution via perturbation theory.

CCSD(T): Coupled cluster theory with singles, doubles, and perturbative triples—O(N7) cost.

CCSD(T) gives benchmark-quality results, but at a high computational cost.
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How well do these models perform?

Molecular Geometries:

Bond Lengths: Mean errors, 29 small molecules (pm)

Basis HF MP2 CCSD CCSD(T)

cc-pVDZ -1.80 1.35 1.07 1.68
cc-pVTZ -2.63 -0.12 -0.63 0.01
cc-pVQZ -2.74 -0.23 -0.79 -0.12

Molecular Energetics:

17 Reaction Energies: Mean Abs. Errors (kJ/mol)

Basis HF MP2 CCSD CCSD(T)

cc-pCVDZ 43.8 36.5 30.2 40.3
cc-pCVTZ 42.3 16.0 10.5 12.7
cc-pCVQZ 43.0 12.9 12.0 3.6

19 Atomization Energies: Mean Errors (kJ/mol)

Basis HF MP2 CCSD CCSD(T)

cc-pCVDZ -450.1 -76.2 -125.4 -103.3
cc-pCVTZ -426.1 -4.2 -65.1 -34.9
cc-pCVQZ -423.7 17.7 -46.1 -14.3

CCSD(T) generally gives most uniform errors (tightest error distributions).
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Density functional theory (DFT), in a nutshell.

Hohenberg-Kohn theorems
1 There exists a 1:1 mapping between density ρ(r) and energy.

ρ(r)↔ Ĥ ↔ E & Ψ(r1, r2, · · · , rn) ⇒ E = E [ρ(r)]

2 Can prove a variational principle for finding the optimal density.

Problem: We don’t know what the true functional looks like!

Kohn-Sham DFT provides a workable solution for approximate density functionals.

E [ρ(r)] = Ts [{φi (r)}] + Jee [ρ(r)] + JeN [ρ(r)] + EXC [ρ(r)]

Exchange-correlation functional EXC [ρ(r)] contains the key approximations.

Different functionals differ in how they approximate EXC [ρ(r)].
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Density functionals have been likened to Jacob’s ladder.

Jacob’s Ladder from the original Luther Bibles of 1534 and 1545

Generally expect quality of results to
improve on higher rungs.

But often have significant variation
across functionals in a rung.

Rungs of the Ladder

1 Local density approximation: Depend on ρ(r).
LDA, SVWN

2 Generalized gradient approximation (GGAs):
Also depend on ∇ρ(r).
PBE, BLYP, etc.

3 meta-GGAs: Also depend on ∇2ρ(r).
TPSS, M06L, SCAN, etc.

4 Hybrid functionals:
Add a fraction of exact/HF exchange.
B3LYP, PBE0, TPSSh, etc.

5 Double-Hybrid functionals: Add MP2-like correlation.
B2PLYP, DSD-P86PBE, etc.

Perdew, Ruzsinszky, Constantin, Sun, and Csonka. J. Chem. Theory Comput. 5, 902 (2009).
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Standard density functionals do not describe van der Waals dispersion.

Augment DFT with a dispersion correction:

Grimme’s D3 and D4.

Tkatchenko-Scheffler (TS) or Many-body Dispersion (MBD).

Becke and Johnson’s Exchange-hole Dipole Moment (XDM).

A few functionals explicitly build in dispersion (ωB97M-V, etc).

Current-generation corrections are largely non-empirical.

Most corrections are inexpensive and should generally be included.

They are crucial in systems where van der Waals interactions matter.

Example: Benzene crystal molar volume is ∼45% too large without dispersion correction!

Grimme, Hansen, Brandenberg, and Bannwarth. Chem. Rev. 116, 5105 (2016).
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Performance of DFT

Reaction Thermochemistry Non-covalent interactions

Mardirossian & Head-Gordon, Mol. Phys, 115, 2315 (2017).
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Gaussian basis sets frequently used for molecular calculations.

Express each molecular orbital as a linear combination of atomic orbitals (AOs).

|φ〉 = c1|χ1〉+ c2|χ2〉+ · · ·+ cn|χn〉

Each atomic orbital χ(r) = f (r)e−a|r | represented via Gaussian functions g(r)e−ar
2

.

Gaussian basis set primer

Minimal basis set: Just the orbitals you’d
expect based on periodic table. Too small!

N-tuple zeta: # of sets of AO functions.
Double-ζ, triple-ζ, quadruple-ζ, etc.

Polarization fns: Higher angular momentum
functions, allow density to polarize.

Diffuse fns: Large orbitals, saturate space
between non-bonded atoms, or anions.

Tight basis fns can be important for special
cases, e.g. some magnetic properties.

http://chem.libretexts.org
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Here are some of the most common basis set families.

Family Basis Names Comments

Minimal STO-3G, STO-6G DON’T USE!

Pople 6-31G(d), 6-31G(d,p) Double-ζ, Smallest decent sets.
6-311G(d), 6-311G(d,p) Triple-ζ, moderately larger.
6-311+G(d), 6-311++G(d,p) The “+” adds diffuse basis functions.

Ahlrichs def2-SVP, def2-TZVP, def2-QZVP Double, triple, and quadruple-ζ. Good for DFT.

Jensen pc-n (where n = 1, 2, 3, 4) Another hierarchy that’s good for DFT.

Dunning cc-pVXZ, aug-cc-pVXZ Good hierarchies for MP2 and coupled cluster.
(where X = D, T, Q) The “aug-” adds diffuse basis functions.

Can also find additional variants of these basis sets with further modifications.
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My basic basis set recommendations.

The following rules of thumb should be helpful, but there can always be special cases.

Alternative basis sets of similar quality
are also acceptable, especially for DFT.

MP2 and coupled cluster need larger
basis sets than DFT.

DFT is usually “good enough” for
geometry optimization.

Add diffuse functions when needed: for
anions, non-covalent interactions, etc.
e.g. 6-311+G(d,p), def2-XZVPD, or

aug-cc-pVXZ

Extra core basis functions are needed
less often, but occasionally. e.g.

cc-pwCVXZ, pcS-n
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Perspective on the choice of a model chemistry

A theoretical model chemistry constitutes a chosen set of approximations used to describe your
systems: Method, Basis Set, etc.

Model and Basis Set Challenge: Best results come from high-quality methods
and large basis sets—often cost-prohibitive.

Chemical accuracy of ∼1 kcal/mol is an aspirational goal.

Large-basis CCSD(T) can sometimes give this.
Most routine calculations will have larger errors.

Composite approaches combine multiple calculations with
different methods and basis sets to estimate high-quality
method in the limit of large basis set.
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Should your calculations agree with experiment?

Sometimes mediocre models match experiment better than higher-quality models.

Method/Basis Set vs. Expt.
Many approximations are involved beyond just method
& basis set.

Simplified molecular representation?

Missing environment or solvent?

Nuclear dynamics/vibrations?

Finite temperature (H or G vs. E)?

Best practices:

Converge your calculations to the extent possible.

Examine the sensitivity of your results to your modeling
choices.

Be aware of what approximations you’re making and the role
fortuitous error cancellation may play.
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Outline

1 Overview of Standard Quantum Chemistry Models
The molecular Schrödinger equation
Born-Oppenheimer approximation
Wave function methods
Density functional theory
Basis sets
Predictions versus reality

2 Selected Applications (biased by my own research)
Theory aiding experiment: NMR crystallography
Theory leading experiment: Photomechanical engines
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Beran group: Building computational models for the organic solid state

1 How do organic molecules pack in solids?

2 How do we build new models that predict these properties
accurately and efficiently?

3 Can we predict crystalline properties to aid experiment?

 110 120 130 140 150 160 170 180
13

C Chemical Shift (ppm)

Candidate Structure 3
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Solving crystal structures isn’t always easy.

Not all materials can be fully characterized via traditional X-ray diffraction techniques.

Peltonen & Strachan. Int. J. Pharm. 586, 119492 (2020).

1 Some materials exhibit only short-range order.
e.g. Amorphous pharmaceuticals.

Al-Kaysi et al. J. Am. Chem. Soc. 128, 15938 (2006).

2 Others can be hard to solve via powder X-ray diffraction.
e.g. Dynamic organic crystal nanomaterials.

Caulkins et al, J. Am. Chem. Soc. 138, 15214 (2016).

3 Diffraction cannot always reveal the salient features.
e.g. Catalytically important protons in the active site of tryptophan synthase.

Greg Beran, U.C. Riverside Overview of Computational Quantum Chemistry. These slides available at https://beran.chem.ucr.edu/teaching.html 29 / 37



Solving crystal structures isn’t always easy.

Not all materials can be fully characterized via traditional X-ray diffraction techniques.

Peltonen & Strachan. Int. J. Pharm. 586, 119492 (2020).

1 Some materials exhibit only short-range order.
e.g. Amorphous pharmaceuticals.

Al-Kaysi et al. J. Am. Chem. Soc. 128, 15938 (2006).

2 Others can be hard to solve via powder X-ray diffraction.
e.g. Dynamic organic crystal nanomaterials.

Caulkins et al, J. Am. Chem. Soc. 138, 15214 (2016).

3 Diffraction cannot always reveal the salient features.
e.g. Catalytically important protons in the active site of tryptophan synthase.

Greg Beran, U.C. Riverside Overview of Computational Quantum Chemistry. These slides available at https://beran.chem.ucr.edu/teaching.html 29 / 37



Solving crystal structures isn’t always easy.

Not all materials can be fully characterized via traditional X-ray diffraction techniques.

Peltonen & Strachan. Int. J. Pharm. 586, 119492 (2020).

1 Some materials exhibit only short-range order.
e.g. Amorphous pharmaceuticals.

Al-Kaysi et al. J. Am. Chem. Soc. 128, 15938 (2006).

2 Others can be hard to solve via powder X-ray diffraction.
e.g. Dynamic organic crystal nanomaterials.

Caulkins et al, J. Am. Chem. Soc. 138, 15214 (2016).

3 Diffraction cannot always reveal the salient features.
e.g. Catalytically important protons in the active site of tryptophan synthase.

Greg Beran, U.C. Riverside Overview of Computational Quantum Chemistry. These slides available at https://beran.chem.ucr.edu/teaching.html 29 / 37



NMR crystallography can help in these situations.

Strategy: Identify candidate crystal structures from PXRD or crystal structure prediction whose
simulated spectroscopic properties match experimentally observed ones.

 110 120 130 140 150 160 170 180
13

C Chemical Shift (ppm)

⇐

Candidate 1 Candidate 2 Candidate 3

RMS Error (ppm)

2.1 2.6 0.8

Higher accuracy prediction = increased discrimination between candidates.

Greg Beran, U.C. Riverside Overview of Computational Quantum Chemistry. These slides available at https://beran.chem.ucr.edu/teaching.html 30 / 37



NMR crystallography can help in these situations.

Strategy: Identify candidate crystal structures from PXRD or crystal structure prediction whose
simulated spectroscopic properties match experimentally observed ones.

 110 120 130 140 150 160 170 180
13

C Chemical Shift (ppm)

Candidate Structure 1

⇐

Candidate 1

Candidate 2 Candidate 3

RMS Error (ppm) 2.1

2.6 0.8

Higher accuracy prediction = increased discrimination between candidates.

Greg Beran, U.C. Riverside Overview of Computational Quantum Chemistry. These slides available at https://beran.chem.ucr.edu/teaching.html 30 / 37



NMR crystallography can help in these situations.

Strategy: Identify candidate crystal structures from PXRD or crystal structure prediction whose
simulated spectroscopic properties match experimentally observed ones.

 110 120 130 140 150 160 170 180
13

C Chemical Shift (ppm)

Candidate Structure 2

⇐

Candidate 1 Candidate 2

Candidate 3

RMS Error (ppm) 2.1 2.6

0.8

Higher accuracy prediction = increased discrimination between candidates.

Greg Beran, U.C. Riverside Overview of Computational Quantum Chemistry. These slides available at https://beran.chem.ucr.edu/teaching.html 30 / 37



NMR crystallography can help in these situations.

Strategy: Identify candidate crystal structures from PXRD or crystal structure prediction whose
simulated spectroscopic properties match experimentally observed ones.

 110 120 130 140 150 160 170 180
13

C Chemical Shift (ppm)

Candidate Structure 3

⇐

Candidate 1 Candidate 2 Candidate 3

RMS Error (ppm) 2.1 2.6 0.8

Higher accuracy prediction = increased discrimination between candidates.

Greg Beran, U.C. Riverside Overview of Computational Quantum Chemistry. These slides available at https://beran.chem.ucr.edu/teaching.html 30 / 37



Our fragment methods enable higher-accuracy chemical shift predictions.

Replace a single large calculation on the full system with many smaller sub-system calculations.

2-Body Embedded Fragment Approach

σ̃A
i ≈ σA,emb.

i +
∑
j

∆2σA,emb.
ij

Compute shieldings for central molecule

Add series of corrections due to pairwise interactions
with nearby molecules.

Embed all monomer/dimer calculations in
self-consistently polarized point charges or polarizable
continuum model (PCM) to capture many-body
polarization effects.

Enables use of more expensive hybrid DFT functionals that reduce errors vs. experiment by
∼30–50% compared to standard GGAs.

Hartman, Balaji, and Beran. J. Chem. Theory Comput. 13, 6043 (2017).

Unzueta & Beran. J. Comp. Chem. 41, 2251 (2020).
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Hybrid PBE0 improves discrimination for acetaminophen polymorphs.

Fragment PBE0 chemical shifts exhibit smaller errors than periodic GIPAW PBE ones.

13C solid-state NMR spectrum

 110 120 130 140 150 160 170 180
13

C Chemical Shift (ppm)

C4 C5C6C7 C1 C2 C3

GIPAW PBE

Form I

Form II

Form III

*

H

O NH

CH
3

O

1

23

4

5 6

7 8

RMS Errors (ppm)

GIPAW PBE 2.0
Fragment PBE0 1.1

Experiment: Burley, Duer, Stein, and Vrcelj. Eur. J. Pharm. Sci. 31, 271–276 (2007). Hartman, Day, and Beran. Cryst. Growth Des. 16, 6479 (2016).
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NMR crystallography is solving the enzyme mechanisms.

Protonation states at multiple sites play key role in the mechanism of tryptophan synthase and
related proteins.

17O shifts for O1 and O2 occur outside typical COOH / COO− shift ranges, hindering interpretation.

17O NMR experiments & chemical shift scaling parameters derived from our molecular crystal
studies reveal fast-exchange dominated by the phenolic form.

Young, Caulkins, Borchardt, Bulloch, Larive, Dunn, and Mueller. Angew. Chem. Int. Ed. 55, 1350 (2016).
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Photomechanical materials transform light into mechanical work.

9-tert-butyl anthracene ester nanorods elongate 8 ± 2% upon irradiation.
Al-Kaysi, Müller, & Bardeen. J. Am. Chem. Soc. 128, 15938 (2006).

Want to make light-powered nano-machines.

Experimentally difficult to:

Determine photochemical structural changes.
Anticipate how altering the molecular will
impact the photomechanical response.

Can theory accelerate then slow trial-and-error
experimental efforts?

NMR crystallography revealed the elongation mechanism.

Chalek et al. Chem. Sci. 12, 453 (2021).
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Can we design improved photomechanical materials in silico?

Use quantum chemistry to lead experiment and investigate:
How will a molecule pack as a crystal?
How will the crystal unit cell transform upon photochemical reaction?
How much work can we extract from a photomechanical engine?

Cook, Li, Lui, Gately, Al-Kaysi, Mueller, Bardeen, & Beran. Chem. Sci. 14, 937-949 (2023).

Cook, Perry, & Beran. submitted (2023).
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Take-away messages.

1 Quantum Chemistry is routinely making predictions that complement or lead experiment.

Examples include organic chemistry, biochemistry, materials, etc.

2 Many different quantum chemistry methods exist.

DFT, MP2, CCSD(T), etc.
DFT offers a “sweet-spot” in terms of computational cost vs. accuracy.
But many functionals to choose from (Jacob’s Ladder).

3 Best Practice: Investigate how your modeling decisions impact your predictions.

Assess sensitivity/uncertainty.
Build confidence in your predictions.
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U.C. Riverside Chemistry PhD Program

Our PhD Program at a glance:

∼35 faculty, ∼140 PhD students in Chemistry.

>$12 million in external grants & 330 papers published in 2021.

Ranked 37th in U.S. in the (data-driven) Shanghai Rankings.

1 Nobel Laureate (Schrock), many ACS Award winners, etc.

One of the most diverse research universities in the nation.

Strong focus on research and individual mentoring.

Take advantage of everything Southern California has to offer:
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Software packages and further reading

Molecular systems

Gaussian/GaussView ($)

Psi4

Q-Chem ($)

Molpro ($)

Orca

Periodic systems

VASP ($)

QuantumEspresso

Crystal ($)

CASTEP

FHI Aims ($)

Further Reading:

Introduction to Computational Chemistry,
3rd Ed., F. Jensen, Wiley, 2017.

Essentials of Computational Chemistry,
2nd Ed. C. Cramer, Wiley, 2004.

The ABC of DFT K. Burke.
https://dft.uci.edu/doc/g1.pdf

Density Functional Theory: A Practical
Introduction, D. Sholl and J. Steckel, Wiley,
2009.
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